COMPUTER SCIENCE
CLASS 11 - STUDY MATERIAL

DICTIONARIES
INTRODUCTION TO DICTIONARIES

It is another collection in Python but with different in way of storing and
accessing. Other collection like list, tuple, strings are having an index
associated with every element but Python Dictionary have a “key” associated
with every element. That's why python dictionaries are known as
KEY:VALUE pairs.

Like with English dictionary we search any word for meaning associated with
it, similarly in Python we search for “key” to get its associated value rather
than searching for an index.

The data type dictionary falls under mapping.

It is a mapping between a set of keys and a set of values.

The key-value pair is called an item.

A key is separated from its value by a colon (:) and consecutive items are
separated by commas.

Items in dictionaries are unordered, so we may not get back the data in the
same order in which we had entered the data initially in the dictionary.

Python Dictionary

key walues walue

| i 4 4
Py dict = 1{ 1: "Apple’, 2: ‘'OnePlus” §

| J K =

Iterm 1 Item 2

=
=

Value

A Key Value Pair
/, Key

“1”: “FACE Prep”

Dictl = {“1”: “FACE Prep”@“Z”: “Python™}

Separator (comma)

CREATING AND ACCESSING DICTIONARY

Creating a Dictionary

Syntax to create dictionary:

dictionary_name = {key1: value, key2: value}

Example

>>>emp = {"empno":1,"name":"Shahrukh","fee":1500000}

Here

Keys are: “empno”, “name” and “fee”

Values are: 1, “Shahrukh”, 1500000

Note:
1) Dictionary elements must be between curly brackets
2) Each value must be paired with key element

3) Each key-value pair must be separated by comma,)

To create a dictionary, the items entered are separated by commas and
enclosed in curly braces. Each item is a key value pair, separated through
colon (:). The keys in the dictionary must be unique and should be of any
immutable data type i.e. number, string or tuple. The values can be repeated
and can be of any data type.

#dict1 is an empty dictionary
>>> dict1 = {}
>>> dict1

{}

#dict3 is the dictionary that maps names of #the students to marks in
percentage

>>> dict3 = {'Mohan':95,'Ram'.89,'Suhel":92, 'Sangeeta':85}
>>> dict3

{'Mohan': 95, 'Ram': 89, 'Suhel": 92, 'Sangeeta': 85}

It is enclosed in curly braces {} and each item is separated from other item by
a commay(,). Within each item, key and value are separated by a colon
(:)-Passing value in dictionary at declaration is dictionary initialization.

e.g.
dict = {"Subject': ‘Informatic Practices', 'Class": ‘11'}
Creating A Dictionary
Dict1 ={} # empty dictionary
DaysInMonth = {"Jan":31,"Feb":28,"Mar":31,"Apr":31
"May":31,"Jun":30,"Jul":31,"Aug":31
"Sep":30,"0Oct":31,"Nov":30,"Dec":31}
Note: Keys of dictionary must of immutable type such as:
- A python string
- A number
- A tuple(containing only immutable entries)
- If we try to give mutable type as key, python will give an error
- >>>dict2 = {[2, 3]:"abc”} #Error
Accessing Items in a Dictionary

Items of a sequence (string, list and tuple) are accessed using a technique
called indexing. The items of a dictionary are accessed via the keys rather
than via their relative positions or indices. Each key serves as the index and
maps to a value.

>>> dict3 = {'Mohan':95,'Ram'.89,'Suhel":92, 'Sangeeta':85}
>>> dict3 ['Ram’]

89

>>> dict3 ['Sangeeta']

85

#using unspecified key

>>> dict3 ['Shyam']

KeyError: 'Shyam'

dict = {'Subject': 'Computer’, 'Class': 11}
print (dict)
print ("Subject: ", dict['Subject’)

print ("Class: ", dict.get('Class'))
OUTPUT

{'Class": '"11", 'Subject": Computer'}
('Subject : ', 'Computer’)
(‘Class':11)

Iterating / Traversing through A Dictionary

Python allows to apply “for” loop to traverse every element of dictionary based
on their “key”. For loop will get every key of dictionary and we can access
every element based on their key.

mydict={"empno’:1,'name':"Shivam’,'dept':'sales’,'salary':25000}
for key in mydict:
print(key,'=',mydict[key])

Following example will show how dictionary items can be accessed through
loop.

e.g.
dict = {'Subject': 'Computer Science', 'Class": 11}
foriin dict:

print(dict[i])
OUTPUT
11
Computer Science

We can access each item of the dictionary or traverse a dictionary using for
loop.

>>> dict1 = {'Mohan':95,'"Ram":89,'Suhel".92,'Sangeeta'.85}

Method 1:

>>> for key in dict1:
print(key,"',dict1[key])

Mohan: 95

Ram: 89

Suhel: 92

Sangeeta: 85

Method 2:

>>> for key, value in dict1.items():
print(key,"",value)

Mohan: 95

Ram: 89

Suhel: 92

Sangeeta: 85

Accessing keys and values simultaneously

>>> mydict={'empno".1,'name":'Shivam’,'dept':'sales','salary':25000}
>>>mydict.keys()

dict_keys(['empno’, 'name’, 'dept’, 'salary'])

>>>mydict.values()

dict_values([1, 'Shivam', 'sales', 25000])

We can convert the sequence returned by keys() and values() by using list()
as shown below:

>>> list(mydict.keys())
[lempno’, 'name’, 'dept’, 'salary’']

>>> list(mydict.values()) [1, 'Shivam’, 'sales’, 25000]

Updating/Manipulating Dictionary Elements —MUTABILITY OF A
DICTIONARY

We can change/modify the individual element of dictionary and add/insert new

elements.

e.g.
dict = {'Subject': 'Computer Science', 'Class": 11}

5

dict['Subject']="computer science'
print(dict)
OUTPUT

{'Class': 11, 'Subject": 'computer science'}

>>> d = {'"Subject’. 'Computer Science', 'Class". 11}
>>> d['marks']=90
>>> d

{'Subject’: 'Computer Science’, 'Class': 11, 'marks": 90}

Characteristics of a Dictionary
Unordered set

® Adictionary is a unordered set of key:value pair
Not a sequence

® Unlike a string, tuple, and list, a dictionary is not a sequence
because it is unordered set of elements. The sequences are
indexed by a range of ordinal numbers. Hence they are ordered
but a dictionary is an unordered collection

Indexed by Keys, Not Numbers
m Dictionaries are indexed by keys. Keys are immutable type
Keys must be unique
= Each key within dictionary must be unique. However two unique
keys can have same values.
>>> data={1:100, 2:200,3:300,4:200}
Mutable
m Like lists, dictionary are also mutable. We can change the value
of a certain “key” in place
Data[3]=400
m >>>Data

® So, to change value of dictionary the format is :

6

B DictionaryName[‘key” / key]=new_value

= You can not only change but you can add new key:value pair :

Internally stored as Mappings

Internally, the key:value pair are associated with one another with some
internal function(called hash function). This way of linking is called mapping

KEY 1 ALUE 3
KEY 2 VALUE1
KEY 3 VALUE4
KEY 4 VALUE 2

Deleting Dictionary Elements

del, pop() and clear() statement are used to remove elements from the
dictionary.

del e.q.

dict = {'Subject': 'Computer Science', 'Class". 11}
print('before del', dict)

del dict['Class'] # delete single element
print(‘after item delete’, dict)

del dict #delete whole dictionary

print(‘after dictionary delete’, dict)

Output

('before del', {'Class': 11, 'Subject': 'Computer Science'}) (‘after item delete’,
{'Subject’: '"Computer Science’})

(‘after dictionary delete', <type 'dict'>)

Deleting elements from Dictionary
Del dictionaryName[“Key”]
>>> D1 ={1:10,2:20,3:30,4:40}

>>> del D1[2]
>>> D1 1:10,2:20,4:40

If you try to remove the item whose key does not exists, the python runtime
error occurs.

del D1[5] #Error

del D1 #deleted the entire dictionary from memory

pop() elements from Dictionary

dictionaryName.Pop([*Key”])

>>> D1 ={1:10,2:20,3:30,4:40}

>>> D1.pop(2) 1:10,2:20,4:40

Note: if key passed to pop() doesn’t exists then python will raise an exception.

Pop() function allows us to customized the error message displayed by use of
wrong key

>>> d1

{'a": 'apple’, 'b": 'ball', 'c": 'caterpillar’, 'd": 'dog'}
>>>d1.pop(“a”)

>>> d1.pop(“d”,”"Not found”)

Not found

Checking the existence of key (membership operators)

We can check the existence of key in dictionary using “in” and “not in”.
>>>alpha={"a":"apple","b":"boy","c":"cat","d":"dog"}

>>>'a'in alpha

True

et

>>>"¢" in alpha False

>>>"e" not in alpha

True

If you pass “value” of dictionary to search using “in” it will return False
>>>"gpple” in alpha

False
To search for a value we have to search in dict.values()

>>>"apple” in alpha.values()

Built-in Dictionary Functions

Built-in functions

“

Python provides many functions to work on dictionaries.
len()

Returns the length or number of key: value pairs of the dictionary passed as
the argument

>>> dict1 = {'Mohan':95,'Ram".89, 'Suhel.92, 'Sangeeta".85}

>>> |en(dict1)

4

dict()
Creates a dictionary from a sequence of key-value pairs
pair1 = [('Mohan',95),('Ram’,89), (‘Suhel',92),('Sangeeta’,85)]

>>> pair1

[('Mohan', 95), ('Ram’, 89), (‘Suhel', 92), ('Sangeeta’, 85)]
>>> dict1 = dict(pair1)
>>> dict1

{'Mohan': 95, 'Ram": 89, 'Suhel': 92, 'Sangeeta': 85}

keys()

Returns a list of keys in the dictionary

>>> dict1 = {'Mohan':95, 'Ram':89, 'Suhel:92, 'Sangeeta'.85}
>>> dict1.keys()

dict_keys(['Mohan', 'Ram’, 'Suhel', 'Sangeeta'])

values()

Returns a list of values in the dictionary

>>> dict1 = {'Mohan':95, 'Ram":89, 'Suhel:92, 'Sangeeta'.85}
>>> dict1.values()

dict_values([95, 89, 92, 85])

items|()

Returns a list of tuples (key — value) pair

>>> dict1 = {'Mohan':95, 'Ram":89, 'Suhel:92, 'Sangeeta'.85}

>>> dict1.items()

dict_items([('Mohan', 95), (‘'Ram', 89), ('Suhel', 92), (‘Sangeeta’, 85)])

get()

Returns the value corresponding to the key passed as the argument

If the key is not present in the dictionary it will return None
>>> dict1 = {'Mohan':95, 'Ram".89, 'Suhel.92, 'Sangeeta".85}

10

>>> dict1.get('Sangeeta')
85

>>> dict1.get('Sohan')
update()

appends the key-value pair of the dictionary passed as the argument to the
key-value pair of the given dictionary

>>> dict1 = {'Mohan':95, 'Ram':89, 'Suhel:92, 'Sangeeta'.85}
>>> dict2 = {'Sohan".79,'Geeta".89}

>>> dict1.update(dict2)

>>> dict1

{'Mohan': 95, 'Ram": 89, 'Suhel': 92, 'Sangeeta’: 85, 'Sohan". 79, 'Geeta': 89}
>>> dict2

{'Sohan': 79, 'Geeta". 89}

clear()

Deletes or clear all the items of the dictionary

>>> dict1 = {'Mohan':95,'Ram".89, 'Suhel.92, 'Sangeeta".85}
>>> dict1.clear()

>>> dict1

{}

del

Deletes the item with the given key

To delete the dictionary from the memory we write:

del Dict_name

>>> dict1 = {'Mohan':95,'"Ram':89, 'Suhel:92, 'Sangeeta'.85}
>>> del dict1['Ram’]

>>> dict1

{'Mohan":95,'Suhel':92, 'Sangeeta': 85}

>>> dict1

NameError: name 'dict1' is not defined

11

min() min(dictionary_name)

Returns the minimum of a key in a dictionary.

max()
Returns the maximum of a key in a dictionary.
>>> vowels
{'e': None, 'a': None, 'i': None, 'u': None, 'o': None}
>>> min (vowels) >>> d
>§> : - {1: 34, 2: 55, 3: 78, 4:
max (vowels <
e i>> min (d)

Alphabets on the basis of |>>> max(d)
ASCII values. 4

max(dictionary_name)

sorted() sorted(dictionary_name)

The sorted function returns a sorted sequence of the keys in a
dictionary.

The sorting is in ascending order and does not modify the original

dictionary.
Alphabets on the basis of ASCII values.

>>> d={1:34,2:55,3:78,4:12}

>>> sorted(d)

[1, 2, 3, 4]
>>> car={'B':'BMW','M': 'merc','R':'rolls royce','A':'audi'}
>>> sorted(car)
[lAl, lBl, lMl, |Rl]

12

DICTIONARIES
dictionary_name.copy()

copy()

The copy() method returns a copy of the specified dictionary.

d={1:34,2:55,3:78,4:12}

>>> newcopy=d.copy ()

>>> newcopy
12 34; 2¢ 55; 31 18; 45 12}

DICTIONARIES
setdefault()

Returns the value of the item with the specified key. If the key
does not exist: insert the key, with the specified value.

dictionary.setdefault(keyname, value)

Second parameter is optional.

Inserting the value if key does not exists.
>>> car = {"brand": "Ford",'"model": "Mustang",'"year": 1964}

>>> x = car.setdefault('"color", "White")

>>> x

'White'

>>> car

{'b;and': 'Ford', 'model': 'Mustang', 'year': 1964, 'color': 'White'}

13

Fetching the value if key exists.

>>> car

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'color':
>>> x = car.setdefault("model", "Bronco")
>>> x

'Mustang'

fromkeys() fromkeys(keys,value)

It created a new dictionary from the given sequence of elements
with a value provided by the user.
>>> k={'a','e','i','o','u' } == | Datatype set
>>> vowels=dict. fromkeys (k, 'vowel')
>>> vowels

{'e’: "vowel', 'a': 'vowel"™, "i':

'vowel', 'u': 'vowel', 'o':

When the value is not specified, None is assigned to each key.

>>> vowels=dict. fromkeys (k)
>>> vowels

{'e': None, 'a': None, 'i': None, 'u': None, 'o': None}

14

popitem() Dict.popitem()

It removes the last inserted item in the dictionary.
It returns the key-value pair that has been removed from the dictionary.

>>> car.popitem()

('A', 'audi')

>>> car

{'B': 'BMW', 'M': 'merc', 'R': 'rolls royce'}

>>> car.p@p('M')

Pop() requires the key that needs to be 'merc'
deleted and returns the value >>> car
corresponding to the key that has been

deleted. {'B': '"BMW', 'R': 'rolls royce'}

Syntax: list.pop() diction.popitem() d.pop(key)

Manipulating Dictionaries

The following examples show the application of those manipulation methods
on dictionaries.

(a) Create a dictionary ‘ODD’ of odd numbers between 1 and 10, where the
key is the decimal number and the value is the corresponding number in
words.

>>> 0ODD = {1:'0One",3:'Three',5:'Five',7:'Seven',9:'Nine'}
>>> 0ODD

15

{1:'One’, 3: 'Three', 5: 'Five', 7: 'Seven', 9: 'Nine’}
(b) Display the keys in dictionary ‘ODD’.

>>> ODD.keys()

dict_keys([1, 3, 5, 7, 9)])

Check if 2 is present or not in dictionary ‘ODD’
>>>2in ODD

False

(c) Display the values in dictionary ‘ODD’.
>>>0DD. Values()

dict_values(['One', 'Three', 'Five', 'Seven', 'Nine’])
(d) Display the items from dictionary ‘ODD’
>>>0DD. Items()

dict_items([(1, 'One’), (3, "Three"), (5, 'Five'), (7, 'Seven'), (9, 'Nine’)])

(e) Find the length of the dictionary ‘ODD’.

>>> |en(ODD)

5

(f) Check if 7 is present or not in dictionary ‘ODD’
>>>7in ODD

True

(h) Retrieve the value corresponding to the key 9

>>> ODD.get(9)

'Nine'

(i) Delete the item from the dictionary, corresponding to the key 9. ‘ODD’
>>> del ODDI[9]

>>> ODD

{1:'One’, 3: 'Three', 5: 'Five', 7: 'Seven'}

PROGRAMS

16

Write a program to enter names of employees and their salaries as input and
store them in a dictionary. Here n is to input by the user.

#Program 4-4
#Program to create a dictionary which stores names of employees
#and their salary
num = int(input("Enter the number of employees whose data to be stored: "))
count =1
employee = dict() #create an empty dictionary
for count in range (n):
name = input("Enter the name of the Employee: ")
salary = int(input("Enter the salary: "))
employee[name] = salary
print("\n\nEMPLOYEE_NAME\tSALARY")
for k in employee:
print(k,"\t\t',employee[Kk])

Write a program to count the number of times a character appears in a
givenstring

#Program 4-5

#Count the number of times a character appears in a given string
st = input("Enter a string: ")

dic = {} #creates an empty dictionary

for ch in st:

if ch in dic: #if next character is already in dic

dic[ch] +=1
else:
dic[ch] = 1 #if ch appears for the first time
for key in dic:

print(key,"" dic[key])

17

Write a program to convert a number entered by the user into its
corresponding number in words. for example if the input is 876 then the output
should be ‘Eight Seven Six’.

num = input("Enter any number: ") #number is stored as string
#numberNames is a dictionary of digits and corresponding number
#names
numberNames = {0:'Zero',1:'One’',2:'Two',3:'Three',4:'Four’)\
5:'Five',6:'Six',7:'Seven',8:'Eight',9:'Nine'}
result ="
for ch in num:

key = int(ch) #converts character to integer

value = numberNamesl[key]

result = result +'' + value

print("The number is:",;num)

print("The number Name is:”, result)

Suggested programs:
1. count the number of times a character appears in a given string using a dictionary
2. create a dictionary with names of employees, their salary and access them

18

